

Agenda

- C-Job & Niels
- Why Ammonia?
- Ammonia Storage
- Ammonia Power Generation
- Ammonia Fuel Knowledge Gaps
- Ammonia Marine Developments

Back Up Slides

Independent design and engineering company

- Serving ship owners and shipyards worldwide
- 7 offices:
 - Hoofddorp
 - Rotterdam
 - Heerenveen
 - Nikolayev
 - Houston
 - Athens
 - Gdansk
- > 180 in-house engineers employed

Renewable Energy Storage & Power Generation

Experience in (R&D) projects

- Batteries
- Hydrogen (H2)
- Ammonia (NH3)
- Methanol (CH3OH)
- Nuclear

View on developments

- Sodium borohydride (NaBH4)
- Iron powder (Fe)
- Other

Research Questions

- Main: How can ammonia be applied safely and effectively as a marine fuel?
- Sub-1: What is the potential of ammonia as a fuel in a sustainable future with respect to storage and production?
- Sub-2: What is the technical feasibility of ammonia power generation onshore?
- Sub-3: What is the technical feasibility of ammonia power generation for marine applications?
- Sub 4: What is the performance of ammonia power generation for marine applications?
- Sub-5: How does conventional power generation compare with ammonia power generation for marine applications?
- Sub-6: What are the general properties of ammonia in consideration of risk & safety, and how to cope with them?
- Sub-7: What risks are identified when using ammonia as a marine fuel?
- Sub-8: What means are required to reduce the risks found in Q7 to an acceptable level, and how do they affect the design?

Winner Maritime Designer Award 2019

https://c-job.com/c-job-lead-naval-architect-niels-de-vries-wins-maritime-designer-award/

https://repository.tudelft.nl/islandora/object/uuid%3Abe8cbe0a-28ec-4bd9-8ad0-648de04649b8

Why Ammonia?

Fuel type	Energy density LHV [MJ/kg]	Volumetric energy density fuel [GJ/m3]	Volumetric energy density fuel + tank** [GJ/m3]	Renewable synthetic production cost [MJ/MJ]	Storage conditions
Marine Gas Oil	42.7	36.7	36.0	N.A.	Ambient
Synthetic Diesel	42.0	35.8	33.2	>3.0	Ambient
Ethanol	26.7	21.1	20.7	>3.0	Ambient
Methanol	19.9	15.8	15.5	2.4	Ambient
Liquid Methane*	50.0	23.4	9.9	2.3	-162 °C
Liquid Ammonia*	18.6	12.7	6.6	1.8	-34 °C
Liquid Hydrogen*	120.0	8.5	3.4	1.8	-253 °C
Compressed Hydrogen	120.0	5.0	1.9	1.7	700 bar

^{*}Volume based on cylindrical tanks (type-C), volumetric energy density can be improved with bi-lobe (type-C), prismatic (type-B), or membrane tanks.

^{**}Concept guideline: all presented information provides a preliminary comparison and is based on a number of assumptions/inputs. A more detailed custom comparison will require more work and could deviate from this preliminary comparison.

Renewable Fuel Selection: Suitability per Ship Type and Autonomy

The main philosophy in the selection process of renewable energy storage types is to aim at a low OPEX. When the size of a certain energy storage system becomes un-proportional in terms of mass volume and/or CAPEX, more dense options should be considered, which will have a higher OPEX.

Autonomy	Ship Type						
Autonomy	Cargo	0	Passenger	Other			
Hours		Batteries					
Days	Hydrogen						
Weeks	Ammonia M	/lethanol	Methanol				

Suitability per Ship Type and Autonomy: Examples

	Ship Type						
Autonomy	Са	Other					
Hours		Batteries					
Days	Hydrogen						
Weeks	Ammonia	Methanol	Methanol				

Ferries – Local (Inland)

Ferries – Regional (Baltic Sea)

Cargo ships – Short Sea & Deep Sea

Dredgers – Global

Ammonia as cargo:

- Fully pressurized
- Semi pressurized/refrigerated
- Fully refrigerated

Ammonia as fuel:

- Cost & complexity
- Density
- Tank types
- Safety considerations

10 bar at atmospheric temperature Intermediate P & T Atmospheric pressure at -34°C

Ammonia as cargo:

Fully pressurized

Semi pressurized/refrigerated

Fully refrigerated

10 bar at atmospheric temperature

Intermediate P & T

Atmospheric pressure at -34°C

Ammonia as fuel:

- Cost & complexity
- Density
- Tank types
- Safety considerations

Type:	Cylindrical	Bi-lobe	Prismatic
Common design pressure:			
High pressure	Χ		
Medium pressure	Χ	X	
Low pressure	X	X	X

Ammonia as cargo:

- Fully pressurized
- Semi pressurized/refrigerated
- Fully refrigerated

10 bar at atmospheric temperature

Intermediate P & T

Atmospheric pressure at -34°C

Ammonia as fuel:

- Cost & complexity
- Density
- Tank types
- Safety considerations

Ammonia as cargo:

- Fully pressurized
- Semi pressurized/refrigerated
- Fully refrigerated

Ammonia as fuel:

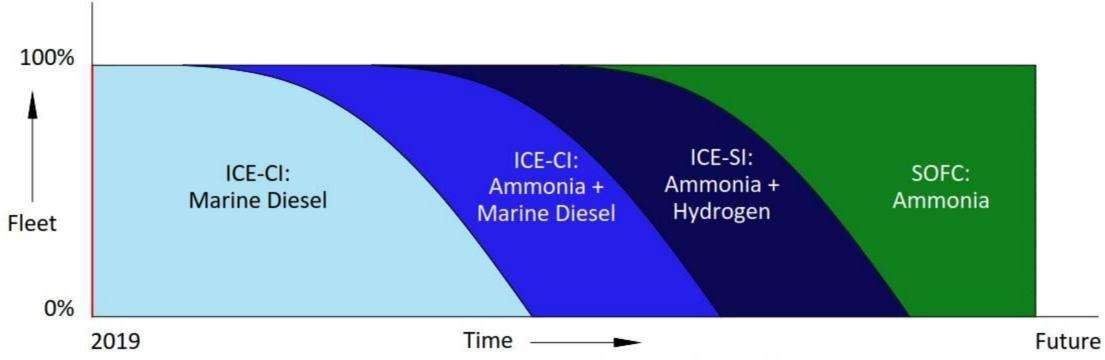
- Cost & complexity
- Density
- Tank types
- Safety considerations

10 bar at atmospheric temperature Intermediate P & T Atmospheric pressure at -34°C

Ammonia Fuel System Principles

- Fully refrigerated ammonia storage
- Ammonia fuel treatment room:
 - Supply (compression & heating/cooling):
 - Liquid
 - Boil-off (gas)
 - Pumps:
 - Low pressure supply +/-10 bar
 - High pressure supply >70bar
- Engine room:
 - Double walled piping (ventilated or pressurized with nitrogen)

Ammonia Fuel System Principles


- Exhaust system:
 - Engine
 - Ventilated ammonia spaces
 - Vent system (pressure/thermal relief)
- Nitrogen system

Ammonia Power Generation

Internal Combustion Engines

Fuel Cells

ICE: Internal Combustion Engine

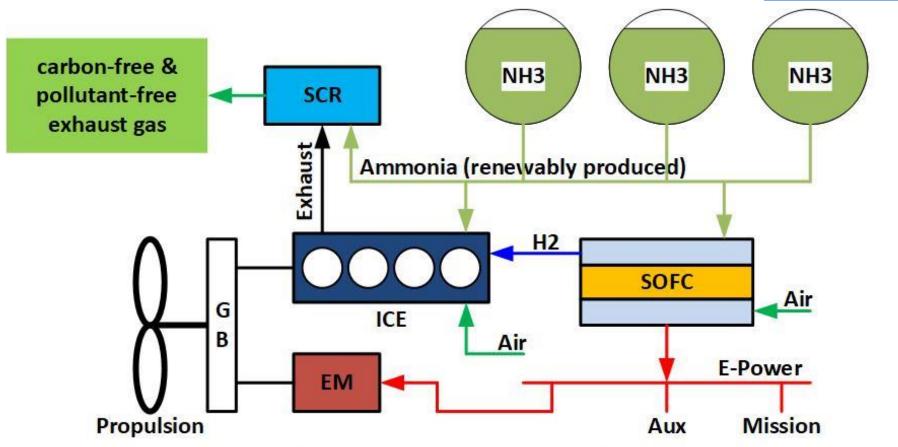
CI: Compression Ignition

SI: Spark Ignition

SOFC: Soild Oxide Fuel Cell

	Reduction of Ha	armful Emissions	
CO2	>80%	100%	100%
NOx	0% (Apply SCR)	0% (Apply SCR)	100%
SOx	>80%	100%	100%
PM	>80%	100%	100%

SCR: Selective Catalytic Reduction Exhaust gas after treatment, capable of reducing NOx more than 95%


AmmoniaDrive

GasDrive

Ammonia

dr. ir. Peter de Vos - 3ME, P.deVos@tudelft.nl

Ammonia Fuel Knowledge Gaps

Including, but not limited to:

- Engine performance, harmful emissions:
 - NOx
 - N2O
 - NH3
- Ventilated ammonia spaces (highly diluted NH3)
- Vent system (high NH3 concentration)

Considerations:

- -> SCR
- -> SCR, catalyst capabale of also reducing N2O
- -> Ammonia slip guidelines SCR system
- -> Ammonia scrubber or (harbour) restictions
- -> Ammonia scrubber or (harbour) restictions

Disclaimer

180,000 ton DWT bulk carrier (Dec-2019)

- Shanghai Merchant Ship Design & Research Institute
- LR Approval in Principle (AiP)
- MAN ES (dual-fuel)

2,700 TEU container ship (Chittagongmax) (Dec-2019)

- Shanghai Merchant Ship Design & Research Institute
- ABS
- MAN ES (dual-fuel)

23,000 TEU container ship (Dec-2019)

- Dalian Shipbuilding Industry Co
- LR Approval in Principle (AiP)
- MAN ES (dual-fuel)

23,000 TEU container ship (Oct-2020)

- Daewoo Shipbuilding & Marine Engineering
- LR Approval in Principle (AiP)
- MAN ES (dual-fuel)

Viking Energy to be retrofit for ammonia fuel in 2024

- 2MW SOFC on green ammonia
- €10.0 million EU funding
- €21.5 million total budget

Goal:

- Installation 2023
- Operation 2024
- 3000 hours of operation annually

Joint Venture Viridis Bulk Carriers (Mar-2021)

- Navigare Logistics
- Amon Maritime
- Mosvolds Rederi

Höegh Autoliners (Apr-2021)

The Aurora Class' multi-fuel engine can run on various biofuel and conventional fuels, including LNG. With minor modifications it can **transition** to use future zero carbon fuels, including Green **Ammonia**.

DNV's new ammonia ready notation

Pt F, Ch 11, Sec 35

SECTION 35

AMMONIA-PREPARED SHIPS

1.1 Application

1.1.1 The additional class notation **AMMONIA-PREPARED** is granted to new ships that are designed with specific arrangements to accommodate future installation of an ammonia fuel system, in accordance with the requirements of this Section. The following cases are considered:

Examples:

AMMONIA-PREPARED

AMMONIA-PREPARED (T)

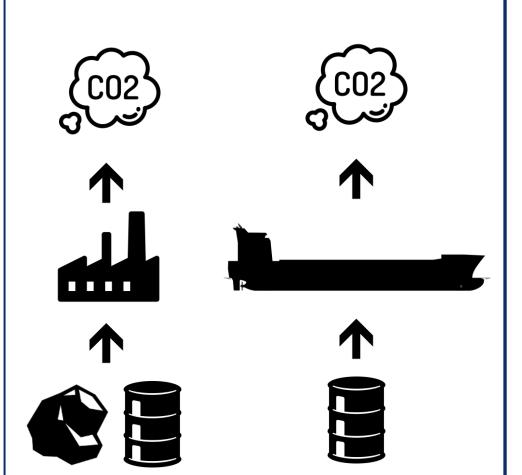
AMMONIA-PREPARED (S,T,H)

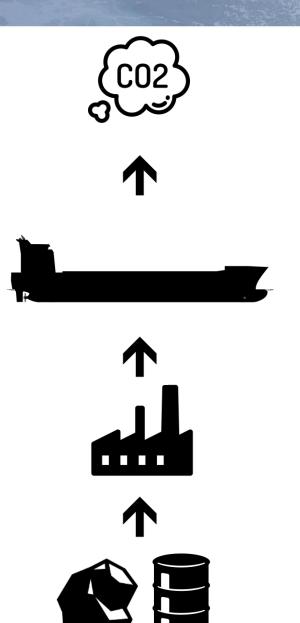
www.c-job.com

info@c-job.com

+31(0)880243700

Niels de Vries n.devries@c-job.com




Back Up Slides

Renewable Fuel Principle

Production -> Consumption
Consumption -> Emission
Emission -> Production

Renewable Fuel Options

Hydrogen usage:

$$CO_2 + 4H_2 -> CH_4 + 2H_2O$$

$$CO_2 + 3H_2 -> CH_3OH + H_2O$$

$$N_2 + 3H_2 -> 2NH_3$$

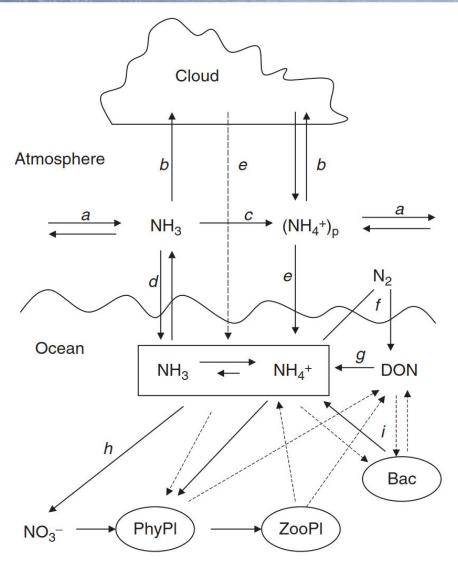
- Existing safety measures
 - Leakages in enclosed spaces (Ventilation)
 - Leakages in open spaces (Water spray)
 - Overpressure in storage tanks (Flaring)

- Risk levels:
 - Flammability
 - Flammable gas
 - A narrow flammability limit: 15-28%, with a high lower limit compared to other fuels
 - A high absolute minimum ignition energy compared to other fuels
 - A high auto ignition temperature: 651 °C
 - Toxicity
 - AEGL 3: Life-threatening health effects or death.

(ppm)	10 min	30 min	60 min	4 hr	8 hr
AEGL 1	30	30	30	30	30
AEGL 2	220	220	160	110	110
AEGL 3	2,700	1,600	1,100	550	390

Table 7-4: Acute Exposure Guideline Levels (AEGL): Ammonia

- Environmental impact
 - Very toxic to aquatic life with long lasting effects



Ammonia in the Nitrogen Cycle

pH Water	mol Ammonia NH₃	mol Ammonium NH₄⁺	mol NH₃/NH₄⁺
7.25	1%	99%	1:100
8.25	9%	91%	1:10
9.25	50%	50%	1:1

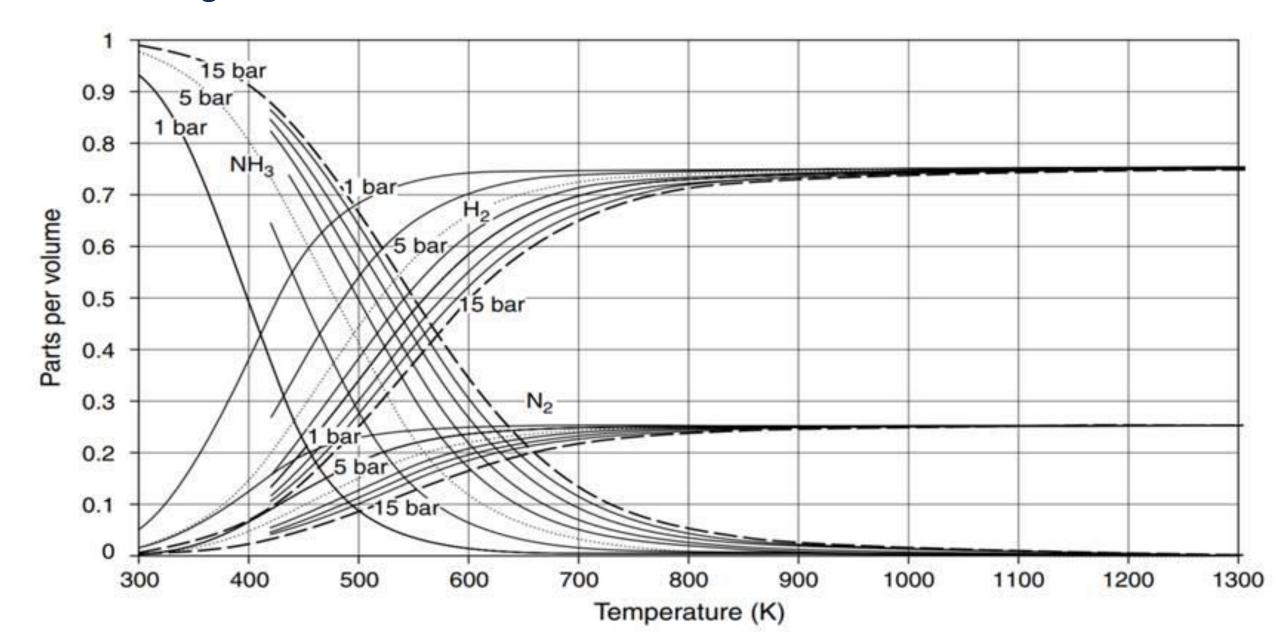
Table 7-3: Fraction of chemical species of ammonia present with change in pH (at 25°C)

D. G. Capone, D.A. Bronk, M. R. Mulholland and E. J. Carpenter, "Chapter 2: Gaseous Nitrogen Compounds (NO, N2O, N2, NH3) in the Ocean - Ammonia & Outlook," in *Nitrogen in the Marine Environment (2nd edition)*, Burlington, Elsevier, 2008, pp. 75 - 84.

- CNG: Compressed Natural Gas
- LNG: Liquefied Natural Gas
- ULSFO: Ultra Low Sulphur Fuel Oil (0.1%)
- Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

Hazard statements	Hazard category	Ammonia [79]	CNG [80]	LNG [81]	Diesel [82]	ULSFO [83]
H220 Extremely flammable gas	1A		Χ	X		
H221 Flammable gas	2	X				
H226 Flammable liquid and vapour	3				X	
H227 Combustible liquid	4					Χ
H280 Contains gas under pressure; may explode	Compressed gas		X			
if heated	Liquefied gas (b)	X*				
H281 Contains refrigerated gas; may cause	Refrigerated			X		
cryogenic burn or injury	liquefied gas					
H304 May be fatal if swallowed and enters airways	1				X	
H313 May be harmful in contact with skin	5				Χ	
H314 Causes severe skin burns and eye damage	1B	Χ				
H315 Causes skin irritation	2				Χ	
H331 Toxic if inhaled	3	Χ				
H332 Harmful if inhaled	4				Χ	Χ
H350 May cause cancer	1B					Χ
H351 Suspected of causing cancer	2				X	
H361 Suspected of damaging fertility or the unborn child	2					X
H373 May cause damage to organs through prolonged or repeated exposure	2				X	X
H410 Very toxic to aquatic life with long lasting effects	1	Х				Х
H411 Toxic to aquatic life with long lasting effects	2				Χ	

Table 7-1: Hazard statements comparison of ammonia with other fuels


General Hydrogen Safety

- CNG: Compressed Natural Gas
- LNG: Liquefied Natural Gas
- ULSFO: Ultra Low Sulphur Fuel Oil (0.1%)
- H: Hazard statement
- 2: Physical hazard
- 3: Health hazard
- 4: Environmental hazard
- Hazard category: a hazard class for which the of a hazard statement is applicable

	Hazard statements	Hazard category	Hydrogen [101]	CNG [80]	LNG [81]	Diesel [82]	ULSFO [83]
	H220 Extremely flammable gas	1A	Χ	Χ	Χ		
	H221 Flammable gas	2					
	H226 Flammable liquid and vapour	3				Χ	
	H227 Combustible liquid	4					Χ
	H280 Contains gas under pressure; may explode	Compressed gas	Χ	Χ			
	if heated	Liquefied gas (b)					
	H281 Contains refrigerated gas; may cause	Refrigerated			Χ		
	cryogenic burn or injury	liquefied gas					
	H304 May be fatal if swallowed and enters	1				Χ	
	airways						
	H313 May be harmful in contact with skin	5				Χ	
	H315 Causes skin irritation	2				Χ	
5	H332 Harmful if inhaled	4				Χ	Χ
	H350 May cause cancer	1B					Χ
	H351 Suspected of causing cancer	2				Χ	
	H361 Suspected of damaging fertility or the	2					Χ
	unborn child						
	H373 May cause damage to organs through	2				Χ	Χ
	prolonged or repeated exposure						
	H410 Very toxic to aquatic life with long lasting	1					Χ
	effects	2					
	H411 Toxic to aquatic life with long lasting effects	2				Х	

Table 8-1: Hazard statements comparison of hydrogen with other fuels

Cracking ammonia

Renewable Energy Storage & Power Generation

Roles of C-Job

- Knowledge partner
- Technical and economical feasiblity studies
- System integration
- Design & engineering

Enabling shipyards and ship owners in the role of knowledge partner to assess and implement the latest technologies to realize the energy transition

Additional experience

- Energy saving
 - Wind-assisted propulsion
 - Weather routing
 - Other

Knowledge and Engineering Partner

- Aid shipowners in review, selection and implementation of renewable energy storage / future fuels
 - Insight in technical consequences
 - Evaluate total cost of ownership
 - Co-creation, implementing operational experience

